无ClusterAgent模式本地安装
当您需要纯本地安装且不需要使用高级功能时,可以使用此选项,但无法使用TensorFusion控制台进行集中管理。
第一步,使用Helm命令一键安装TensorFusion。
bash
helm upgrade --install --create-namespace --namespace tensor-fusion-sys \
--repo https://download.tensor-fusion.ai \
--set agent.agentId="" -f https://download.tensor-fusion.ai/values-cn.yaml \
tensor-fusion-sys tensor-fusion
bash
helm upgrade --install --create-namespace --namespace tensor-fusion-sys \
--repo https://download.tensor-fusion.ai \
--set agent.agentId="" tensor-fusion-sys tensor-fusion
bash
helm upgrade --install --create-namespace --namespace tensor-fusion-sys \
--repo https://download.tensor-fusion.ai \
--set agent.enrollToken=xxx --set agent.agentId=xxx \
--set agent.cloudEndpoint=wss://your-own.domain/_ws \
tensor-fusion-sys tensor-fusion
第二步,应用TensorFusion的集群配置清单。
bash
kubectl apply -f https://app.tensor-fusion.ai/tmpl/tf-cluster-cn
kubectl apply -f https://app.tensor-fusion.ai/tmpl/tf-scheduling-config
bash
kubectl apply -f https://app.tensor-fusion.ai/tmpl/tf-cluster
kubectl apply -f https://app.tensor-fusion.ai/tmpl/tf-scheduling-config
第三步,验证TensorFusion是否安装成功。
bash
kubectl get pods -n tensor-fusion-sys
# 预期输出:
# NAME READY STATUS RESTARTS AGE
# hypervisor-<节点名称> 1/1 Running 0 2m
kubectl get tensorfusionclusters
# 预期输出:
# NAME STATUS AGE
# shared-tensor-fusion-cluster Ready 2m
最后,部署一个Pytorch Pod来端到端验证TensorFusion远程vGPU:
yaml
# simple-pytorch.yaml
# kubectl apply -f simple-pytorch.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: pytorch-example
namespace: default
labels:
app: pytorch-example
tensor-fusion.ai/enabled: 'true'
spec:
replicas: 1
selector:
matchLabels:
app: pytorch-example
template:
metadata:
labels:
app: pytorch-example
tensor-fusion.ai/enabled: 'true'
annotations:
tensor-fusion.ai/inject-container: python
tensor-fusion.ai/tflops-limit: '10'
tensor-fusion.ai/tflops-request: '20'
tensor-fusion.ai/vram-limit: 4Gi
tensor-fusion.ai/vram-request: 4Gi
spec:
containers:
- name: python
image: docker.m.daocloud.io/pytorch/pytorch:2.6.0-cuda12.4-cudnn9-runtime
command:
- sh
- '-c'
- sleep 1d
restartPolicy: Always
terminationGracePeriodSeconds: 0
dnsPolicy: ClusterFirst
执行以下命令验证GPU资源分配:
bash
nvidia-smi
# 预期显存为4Gi,而不是显卡的总显存数量
执行以下脚本,可在虚拟GPU中运行Qwen3 0.6B,验证推理结果
bash
pip config set global.index-url https://pypi.mirrors.ustc.edu.cn/simple
pip install modelscope packaging transformers accelerate
cat << EOF >> test-qwen.py
from modelscope import AutoModelForCausalLM, AutoTokenizer
model_name = "Qwen/Qwen3-0.6B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="cuda:0"
)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=32768
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
print("thinking content:", thinking_content)
print("content:", content)
EOF
python3 test-qwen.py
卸载TensorFusion
运行如下命令一键卸载所有组件
bash
# 可指定 KUBECONFIG 环境变量
curl -sfL https://download.tensor-fusion.ai/uninstall.sh | sh -
常见问题
如果hypervisor Pod未显示,请检查GPU节点是否已添加标签nvidia.com/gpu.present=true
bash
kubectl get nodes --show-labels | grep nvidia.com/gpu.present=true
# 预期找到GPU节点输出:
# gpu-node-name Ready <none> 42h v1.32.1 beta.kubernetes.io/arch=amd64,...,kubernetes.io/os=linux,nvidia.com/gpu.present=true
解决方法:可以添加标签或修改TensorFusionCluster资源使用自定义标签识别GPU节点
bash
# Using helm `initialGpuNodeLabelSelector` parameter to add env var `INITIAL_GPU_NODE_LABEL_SELECTOR` to tensor-fusion-operator:
helm upgrade --install --create-namespace --namespace tensor-fusion-sys --repo https://download.tensor-fusion.ai --set agent.agentId="" --set initialGpuNodeLabelSelector="your-own-gpu-label-key=value" tensor-fusion-sys tensor-fusion
bash
curl https://app.tensor-fusion.ai/tmpl/tf-cluster > tf-cluster.yaml
# 编辑tf-cluster.yaml
# nodeManagerConfig:
# nodeSelector:
# nodeSelectorTerms:
# - matchExpressions:
# - key: nvidia.com/gpu.present // TODO -/+
# operator: In
# values:
# - "true"
kubectl apply -f tf-cluster.yaml